If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25u^2-35=0
a = 25; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·25·(-35)
Δ = 3500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3500}=\sqrt{100*35}=\sqrt{100}*\sqrt{35}=10\sqrt{35}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{35}}{2*25}=\frac{0-10\sqrt{35}}{50} =-\frac{10\sqrt{35}}{50} =-\frac{\sqrt{35}}{5} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{35}}{2*25}=\frac{0+10\sqrt{35}}{50} =\frac{10\sqrt{35}}{50} =\frac{\sqrt{35}}{5} $
| 1-7x=5-7x | | 3x+8=-9x+56 | | 3/4x-5/9x=4 | | 3/3x-5/9x=4 | | w^2+10w-65=0 | | 12-(6-1)=12-6-n | | 12-(5)=12-6-x | | 12+t÷3=17 | | x-3=-x | | (x^2)+x-49.5=0 | | 5y+7y=28 | | 7-2r=5 | | 7-2r=-5 | | -6-5(5-3)=-6-5-x | | 5x+6=2x-10 | | 4−5x=15−(6x+3) | | 28=-7/6y | | 6.3x=12.6 | | -4m+7=-43 | | 0.8*(1+x)=1.5 | | 5n+1*20=1070 | | 9m−4(2m−6)=19 | | 2+(3x0)=2 | | 2+3x0=2 | | 7/32=1/x | | 2x{3x+2}-10=4x+14 | | -1/x+1/5=8/x | | 1/2(4x+16)=20 | | (4x+7)/15=(6x+2)/10 | | 4/7{21/8+1/2}=-2{1/7-5/28x} | | x-22=-49 | | x+22=-49 |